Рабы компьютера: дешевле роботов, надежнее людей

Управление складскими операциями последовательно автоматизируется, в том числе благодаря технологиям «интернета вещей». Один из примеров эволюции складской работы — комплектация товара с использованием распознавания изображений. Новый подход помогает разгрузить сотрудников и сохранить качество. Для примера — материал о том, как можно применить алгоритм распознавания изображений на отдельном участке склада.

В технологии распознавания изображений как таковой новизны нет: практически каждый смартфон умеет считывать QR-коды, а наиболее продвинутые модели могут «узнавать» лица и предметы. Однако использование и модификация этой технологии для решения производственных задач пока находится на уровне эксперимента.

Человеческий фактор исключается

Распознавание изображений на производственных объектах своему развитию обязано прежде всего требованиям безопасности: по контролю доступа на территории и в помещении, а также защиты сотрудников на потенциально опасных участках. Другая ключевая задача большинства нововведений на производстве — снижение трудоемкости.

К примеру, установка камеры у ворот склада позволяет не только фиксировать въезд и выезд транспортных средств и распознавать их номера, но и снизить нагрузку и ответственность сторожа. Если прежде он был вынужден встречать каждый проезжающий автомобиль и сверяться с транспортной накладной, то сегодня эта задача выполняется в автоматическом режиме благодаря камерам наблюдения и алгоритму распознавания номера.

На внутренних площадках склада камеры нужны не только для контроля доступа к определенным зонам, но и обеспечения безопасности людей. Например, установка тяжелого груза на верхнем ярусе хранения была проведена с нарушением норм безопасности, следовательно — в любую минуту он может упасть на находящихся внизу людей.

Такая ситуация возможна в том числе и на складах самообслуживания или в гипермаркетах, где помимо сотрудников находятся обычные покупатели. Чтобы исключить человеческий фактор и возможность инцидента, используются камера и алгоритм: в случае опасности система сделает предупреждение.

В складской работе камеры чаще применяют для контроля процессов движения и размещения. Таким образом можно проследить путь товара по складу и убедиться в его целости и сохранности. Использование этих камер для частичной автоматизации и высвобождения персонала — экономически целесообразно, считают в SAP.

Новая технология, разработанная в компании, позволяет распознавать изображения на точке комплектации товара. Это может помочь в снижении трудоемкости задачи и уменьшить необходимое число сотрудников на участке.

Алгоритм надежнее человека

Обычный процесс комплектации заказа на складе выглядит так: один или несколько сотрудников с ведомостью ходят по складу и собирают содержимое «коробки». Затем сотрудник проверяет правильность комплектовки, считывая штрих-коды товаров, находящихся в коробке, и запаковывает ее.

Сценарий, который предлагает «пилотная» разработка SAP — проще. Камера, установленная на точке отгрузки товара, с помощью алгоритма распознавания изображений считывает сразу все штрих-коды товаров в коробке и автоматически проверяет правильность комплектовки.

Так высвобождается время сотрудника, который выполняет контрольную операцию, и использование дорогостоящих терминалов для считывания штрих-кодов становится необязательным. Кроме того, полученную в момент проверки «картинку» можно по требованию предъявить клиенту в случае возникновения претензий с его стороны.

Особенность испытуемого алгоритма в том, что он умеет выделять различные области в рамках одного изображения, а следовательно — за раз идентифицировать группу объектов. Оператору со сканером потребовалось бы совершить гораздо большее число действий для выполнения такой задачи.

Этот пробный шаг по автоматизации части складской работы станет лишь первым в ряду подобных, если его экономическая эффективность будет доказана. Идея может распространиться от точки комплектации заказа и дальше «вглубь» склада. Так или иначе, использование подобных IoT-технологий обойдется складу дешевле, чем роботизация линии или целого склада, и позволит снизить требования к сотрудникам склада.

Подобрать квалифицированный персонал не всегда просто и по той причине, что крупные склады бывают размещены в пределах небольшого по численности населения города. Таким образом, склад выступает в качестве основного локального работодателя и едва ли не половина трудоспособного населения города успевает в том или ином качестве на нем поработать.

В долгосрочной перспективе это может привести к снижению дисциплины труда, развитию мошеннических схем и кражам товара. В такой ситуации автоматизация складской работы положительно повлияет и на уровень контроля.

На данном этапе прототип тестируется в условиях «боевых» задач: реального оборудования и реальных грузов. Выводы о применимости технологии на складе будут выстроены на понимании экономического эффекта: дешевле ли такой комплекс, чем человек со сканирующим терминалом, и быстрее ли.

Сама по себе технология не вызывает никаких сомнений и безусловно действенна: распознавание изображений используется повсеместно — от камер над проезжей частью до потребительских мобильных сервисов.

IoT-решения легко интегрировать

Прототип по распознаванию изображений на стадии комплектации — один из модулей, которые интегрируются с системой управления складом. На базе SAP HANA Cloud Platform (SAP HCP) можно разрабатывать и другие микросервисы, объединяющиеся с базовым ядром. Также их можно подключать к различным системам.

Платформа позволяет связывать традиционные бизнес-решения с «интернетом вещей» и облачными технологиями. Преимущества облачных сервисов вполне очевидны: клиент покупает исключительно услугу, которой он планирует воспользоваться, и не тратит средства на поддержку инфраструктуры и штат специалистов. Такие решения позволяют сравнительно небольшим компаниям выйти на рынок и предлагать конкурентные решения на одинаковых условиях с известными и успешными компаниями.

Многие технологии на основе «интернета вещей» выгоднее глубокой модернизации тем, что не требуют значительных изменений в парке оборудования. В данном случае, используются уже установленные на складе камеры, но значительно расширяется спектр их применения. При этом технологии распознавания как ключевые в области обеспечения безопасности жизни людей развиваются ударными темпами, и внедрять их в бизнес-процессы с каждым годом становится все проще.

Источник материала
Настоящий материал самостоятельно опубликован в нашем сообществе пользователем Postman на основании действующей редакции Пользовательского Соглашения. Если вы считаете, что такая публикация нарушает ваши авторские и/или смежные права, вам необходимо сообщить об этом администрации сайта на EMAIL abuse@proru.org с указанием адреса (URL) страницы, содержащей спорный материал. Нарушение будет в кратчайшие сроки устранено, виновные наказаны.

Читайте также:

Кстати, по этому поводу сразу вспомнилось: - Моня, а вот как ты себе женщину выбираешь? - Таки, как автомашину. Красивая, не дорогая в обслуживании и чтобы не ломалась.

Комментарии о материале

На почту
avatar
wpDiscuz